Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Viruses ; 14(8)2022 08 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2024282

RESUMEN

The rapid transmission of measles poses a great challenge for measles elimination. Thus, rapid testing is required to screen the health status in the population during measles outbreaks. A pseudotype-based virus neutralisation assay was used to measure neutralising antibody titres in serum samples collected from healthcare workers in Sheffield during the measles outbreak in 2016. Vesicular stomatitis virus (VSV) pseudotypes bearing the haemagglutinin and fusion glycoproteins of measles virus (MeV) and carrying a luciferase marker gene were prepared; the neutralising antibody titre was defined as the dilution resulting in 90% reduction in luciferase activity. Spearman's correlation coefficients between IgG titres and neutralising antibody levels ranged from 0.40 to 0.55 (p < 0.05) or from 0.71 to 0.79 (p < 0.0001) when the IgG titres were obtained using different testing kits. In addition, the currently used vaccine was observed to cross-neutralise most circulating MeV genotypes. However, the percentage of individuals being "well-protected" was lower than 95%, the target rate of vaccination coverage to eliminate measles. These results demonstrate that the level of clinical protection against measles in individuals could be inferred by IgG titre, as long as a precise correlation has been established between IgG testing and neutralisation assay; moreover, maintaining a high vaccination coverage rate is still necessary for measles elimination.


Asunto(s)
Anticuerpos Neutralizantes , Sarampión , Anticuerpos Antivirales , Brotes de Enfermedades/prevención & control , Personal de Salud , Humanos , Inmunoglobulina G , Luciferasas , Sarampión/epidemiología , Sarampión/prevención & control , Vacuna Antisarampión , Vacunación
3.
Commun Biol ; 5(1): 666, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1921725

RESUMEN

B.1.1.7 lineage SARS-CoV-2 is more transmissible, leads to greater clinical severity, and results in modest reductions in antibody neutralization. Subgenomic RNA (sgRNA) is produced by discontinuous transcription of the SARS-CoV-2 genome. Applying our tool (periscope) to ARTIC Network Oxford Nanopore Technologies genomic sequencing data from 4400 SARS-CoV-2 positive clinical samples, we show that normalised sgRNA is significantly increased in B.1.1.7 (alpha) infections (n = 879). This increase is seen over the previous dominant lineage in the UK, B.1.177 (n = 943), which is independent of genomic reads, E cycle threshold and days since symptom onset at sampling. A noncanonical sgRNA which could represent ORF9b is found in 98.4% of B.1.1.7 SARS-CoV-2 infections compared with only 13.8% of other lineages, with a 16-fold increase in median sgRNA abundance. We demonstrate that ORF9b protein levels are increased 6-fold in B.1.1.7 compared to a B lineage virus in vitro. We hypothesise that increased ORF9b in B.1.1.7 is a direct consequence of a triple nucleotide mutation in nucleocapsid (28280:GAT > CAT, D3L) creating a transcription regulatory-like sequence complementary to a region 3' of the genomic leader. These findings provide a unique insight into the biology of B.1.1.7 and support monitoring of sgRNA profiles to evaluate emerging potential variants of concern.


Asunto(s)
COVID-19 , ARN , COVID-19/diagnóstico , COVID-19/genética , Humanos , SARS-CoV-2/genética
4.
Nat Commun ; 13(1): 671, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1671559

RESUMEN

Hospital outbreaks of COVID19 result in considerable mortality and disruption to healthcare services and yet little is known about transmission within this setting. We characterise within hospital transmission by combining viral genomic and epidemiological data using Bayesian modelling amongst 2181 patients and healthcare workers from a large UK NHS Trust. Transmission events were compared between Wave 1 (1st March to 25th J'uly 2020) and Wave 2 (30th November 2020 to 24th January 2021). We show that staff-to-staff transmissions reduced from 31.6% to 12.9% of all infections. Patient-to-patient transmissions increased from 27.1% to 52.1%. 40%-50% of hospital-onset patient cases resulted in onward transmission compared to 4% of community-acquired cases. Control measures introduced during the pandemic likely reduced transmissions between healthcare workers but were insufficient to prevent increasing numbers of patient-to-patient transmissions. As hospital-acquired cases drive most onward transmission, earlier identification of nosocomial cases will be required to break hospital transmission chains.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Genoma Viral , Epidemiología Molecular , Pandemias , SARS-CoV-2/genética , Teorema de Bayes , Estudios de Cohortes , Infección Hospitalaria/epidemiología , Infección Hospitalaria/transmisión , Brotes de Enfermedades , Genómica , Personal de Salud , Hospitales , Humanos , Reino Unido/epidemiología
5.
J Clin Microbiol ; 59(6)2021 05 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1158099

RESUMEN

LamPORE is a novel diagnostic platform for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA combining loop-mediated isothermal amplification with nanopore sequencing, which could potentially be used to analyze thousands of samples per day on a single instrument. We evaluated the performance of LamPORE against reverse transcriptase PCR (RT-PCR) using RNA extracted from spiked respiratory samples and stored nose and throat swabs collected at two UK hospitals. The limit of detection of LamPORE was 10 genome copies/µl of extracted RNA, which is above the limit achievable by RT-PCR, but was not associated with a significant reduction of sensitivity in clinical samples. Positive clinical specimens came mostly from patients with acute symptomatic infection, and among them, LamPORE had a diagnostic sensitivity of 99.1% (226/228; 95% confidence interval [CI], 96.9% to 99.9%). Among negative clinical specimens, including 153 with other respiratory pathogens detected, LamPORE had a diagnostic specificity of 99.6% (278/279; 98.0% to 100.0%). Overall, 1.4% (7/514; 0.5% to 2.9%) of samples produced an indeterminate result on first testing, and repeat LamPORE testing on the same RNA extract had a reproducibility of 96.8% (478/494; 94.8% to 98.1%). LamPORE has a similar performance as RT-PCR for the diagnosis of SARS-CoV-2 infection in symptomatic patients and offers a promising approach to high-throughput testing.


Asunto(s)
COVID-19 , Secuenciación de Nanoporos , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , Reproducibilidad de los Resultados , SARS-CoV-2 , Sensibilidad y Especificidad
6.
Genome Res ; 31(4): 645-658, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1135943

RESUMEN

We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.


Asunto(s)
Genoma Viral , ARN Viral/genética , SARS-CoV-2/genética , Análisis de Secuencia de ARN/métodos , Animales , Secuencia de Bases , Chlorocebus aethiops , Humanos , Límite de Detección , Células Vero
7.
Cell ; 182(4): 812-827.e19, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: covidwho-628613

RESUMEN

A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional, and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to a higher titer as pseudotyped virions. In infected individuals, G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, but not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus and support continuing surveillance of Spike mutations to aid with development of immunological interventions.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/fisiopatología , Monitoreo Epidemiológico , Aptitud Genética , Variación Genética , Sistemas de Información Geográfica , Hospitalización , Humanos , Pandemias , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/fisiopatología , Sistema Respiratorio/virología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Carga Viral
10.
Euro Surveill ; 25(14)2020 04.
Artículo en Inglés | MEDLINE | ID: covidwho-47053

RESUMEN

Healthcare workers (HCW) are potentially at increased risk of infection with coronavirus disease (COVID-19) and may transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to vulnerable patients. We present results from staff testing at Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom. Between 16 and 29 March 2020, 1,533 symptomatic HCW were tested, of whom 282 (18%) were positive for SARS-CoV-2. Testing HCW is a crucial strategy to optimise staffing levels during this outbreak.


Asunto(s)
Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Coronavirus/aislamiento & purificación , Guías como Asunto , Personal de Salud , Neumonía Viral/diagnóstico , Betacoronavirus , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Brotes de Enfermedades , Humanos , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , Prevalencia , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/diagnóstico , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/virología , Medicina Estatal , Reino Unido/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA